

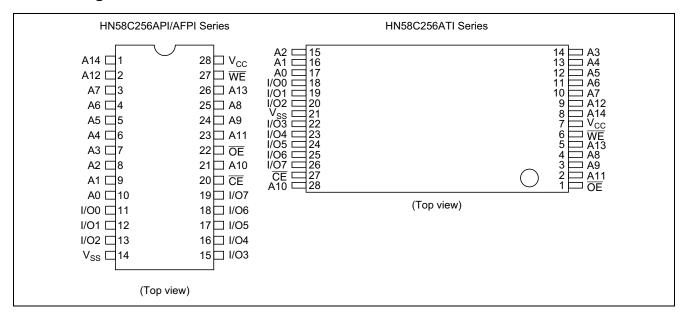
HN58C256AI Series

256k EEPROM (32-kword × 8-bit)

R10DS0218EJ0100 Rev.1.00 Oct 07, 2013

Description

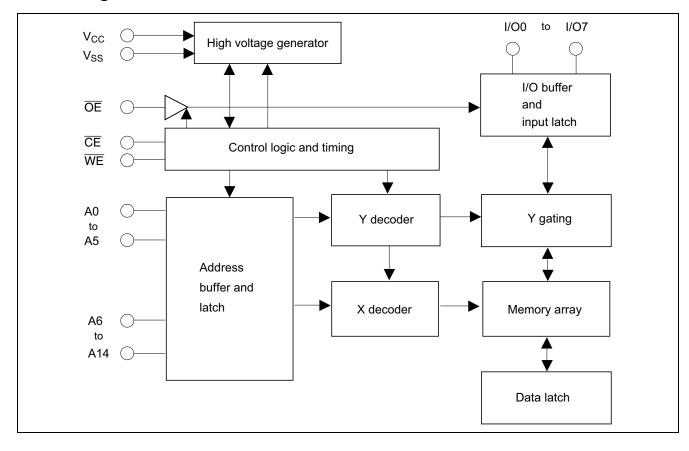
Renesas Electronics' HN58C256AI are electrically erasable and programmable ROMs organized as 32768-word \times 8-bit. They have realized high speed low power consumption and high reliability by employing advanced MNOS memory technology and CMOS process and circuitry technology. They also have a 64-byte page programming function to make their write operations faster.


Features

- Single 5 V supply: 5 V ±10%
 Access time: 85 ns/100 ns (max)
- Power dissipation
 - Active: 20 mW/MHz, (typ)Standby: 110 μW (max)
- On-chip latches: address, data, \(\overline{CE}\), \(\overline{OE}\), \(\overline{WE}\)
- Automatic byte write: 10 ms max
- Automatic page write (64 bytes): 10 ms max
- Data polling and Toggle bit
- Data protection circuit on power on/off
- Conforms to JEDEC byte-wide standard
- Reliable CMOS with MNOS cell technology
- 10⁵ erase/write cycles (in page mode)
- 10 years data retention
- Software data protection
- There are lead free products

Ordering Information

Orderable Part Name	Access time	Package	Shipping Container	Quantity
HN85C256API85E	85ns	600mil 28-pin plastic DIP	Tube	Max. 13 pcs/tube
HN85C256API10E	100ns	PRDP0028AB-A (DP-28V)		Max. 325 pcs/inner box
HN85C256AFPI85E	85ns	400mil 28-pin plastic SOP	Tube	Max. 25 pcs/tube
HN85C256AFPI10E	100ns	PRSP0028DC-A (FP-28DV)		Max. 1,000 pcs/inner box
HN85C256AFPI85EZ	85ns		Tape and reel	1,000 pcs/reel
HN85C256AFPI10EZ	100ns			
HN85C256ATI85E	85ns	28-pin plastic TSOP	Tray	Max. 60 pcs/tray
HN85C256ATI10E	100ns	PTSA0028ZB-A (TFP-28DBV)		Max. 600 pcs/inner box


Pin Arrangement

Pin Description

Pin Name	Function
A0 to A14	Address input
I/O0 to I/O7	Data input/output
ŌĒ	Output enable
CE	Chip enable
WE	Write enable
V _{CC}	Power supply
V _{SS}	Ground
NC	No connection

Block Diagram

Operation Table

Operation	CE	ŌĒ	WE	I/O
Read	V _{IL}	V _{IL}	V _{IH}	Dout
Standby	V _{IH}	×*1	×	High-Z
Write	V _{IL}	V _{IH}	V _{IL}	Din
Deselect	V _{IL}	V _{IH}	V _{IH}	High-Z
Write inhibit	×	×	V _{IH}	_
	×	V _{IL}	×	_
Data polling	V _{IL}	V _{IL}	V _{IH}	Dout (I/O7)
Program reset	×	×	×	High-Z

Note: 1. Don't care

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power supply voltage relative to V _{SS}	V _{CC}	-0.6 to +7.0	V
Input voltage relative to V _{SS}	Vin	-0.5^{*1} to $+7.0^{*3}$	V
Operating temperature range*2	Topr	-40 to +85	°C
Storage temperature range	Tstg	-55 to +125	°C

Notes: 1. Vin min: -3.0 V for pulse width ≤ 50 ns

2. Including electrical characteristics and data retention

3. Should not exceed V_{CC} + 1 V.

Recommended DC Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V
	V _{SS}	0	0	0	V
Input voltage	V _{IL}	-0.3* ¹	_	0.6	V
	V _{IH}	3.0	_	$V_{CC} + 0.3*^2$	V
Operating temperature	Topr	-40	_	+85	°C

Notes: 1. V_{IL} min: -1.0 V for pulse width ≤ 50 ns

2. V_{IH} max: V_{CC} + 1.0 V for pulse width \leq 50 ns

DC Characteristics

(Ta	= -40 to	+85°C.	$V_{CC} =$	5.0	V + 10%

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input leakage current	ILI	_	_	2	μΑ	V _{CC} = 5.5 V, Vin = 5.5 V
Output leakage current	I _{LO}	_	_	2	μΑ	V _{CC} = 5.5 V, Vout = 5.5/0.4 V
Standby V _{CC} current	I _{CC1}	_	_	20	μΑ	CE = V _{CC}
	I _{CC2}	_	1	1	mA	CE = V _{IH}
Operating V _{CC} current	I _{CC3}	_	_	12	mA	lout = 0 mA, Duty = 100%, Cycle = 1 µs, V _{CC} = 5.5 V
		_	1	30	mA	lout = 0 mA, Duty = 100%, Cycle = 85 ns, V_{CC} = 5.5 V
Output low voltage	V _{OL}	_	_	0.4	V	I _{OL} = 2.1 mA
Output high voltage	V _{OH}	$V_{CC} \times 0.8$	_	_	V	I _{OH} = -400 μA

Capacitance

 $(Ta = +25^{\circ}C, f = 1 \text{ MHz})$

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input capacitance*1	Cin	_	_	6	pF	Vin = 0 V
Output capacitance*1	Cout	_	_	12	pF	Vout = 0 V

Note: 1. This parameter is periodically sampled and not 100% tested.

AC Characteristics

 $(Ta = -40 \text{ to } +85^{\circ}\text{C}, V_{CC} = 5.0 \text{ V} \pm 10\%)$

Test Conditions

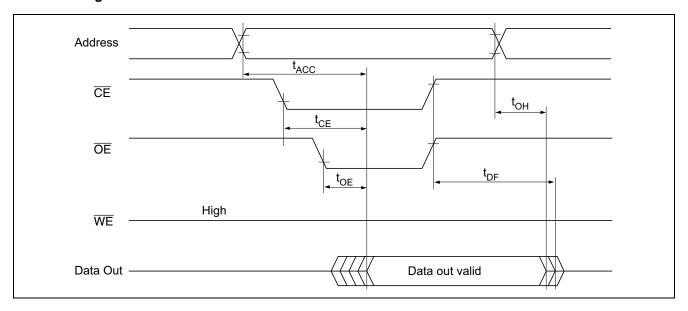
Input pulse levels: 0.4 V to 3.0 V
Input rise and fall time: ≤ 5 ns

Input timing reference levels: 0.8, 2.0 V
 Output load: 1TTL Gate +100 pF
 Output reference levels: 1.5 V, 1.5 V

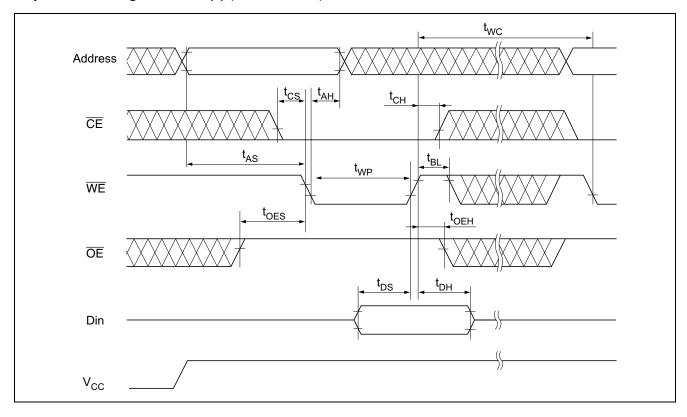
Read Cycle

		HN58C256API/AFPI/		PI/AFPI/ATI			
		-8	35	-1	0		
Parameter	Symbol	Min	Max	Min	Max	Unit	Test conditions
Address to output delay	t _{ACC}	_	85	_	100	ns	$\overline{CE} = \overline{OE} = V_{IL}, \overline{WE} = V_{IH}$
CE to output delay	t _{CE}	_	85	_	100	ns	$\overline{OE} = V_{IL}, \overline{WE} = V_{IH}$
OE to output delay	t _{OE}	10	40	10	50	ns	$\overline{CE} = V_{IL}, \overline{WE} = V_{IH}$
Address to output hold	t _{OH}	0	_	0	_	ns	$\overline{CE} = \overline{OE} = V_{IL}, \overline{WE} = V_{IH}$
OE (CE) high to output float*1	t _{DF}	0	40	0	40	ns	$\overline{CE} = V_{IL}, \overline{WE} = V_{IH}$

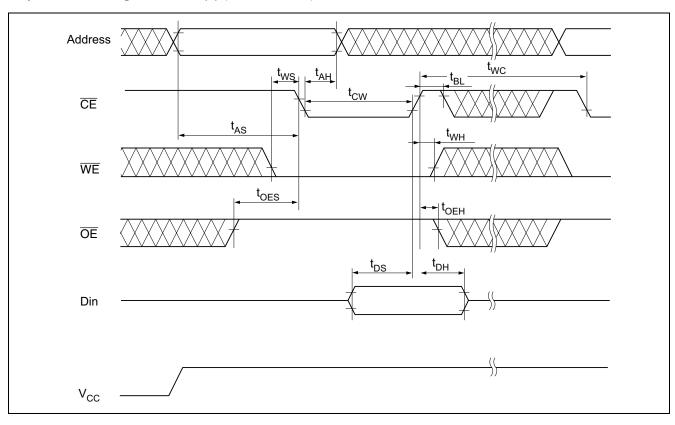
Write Cycle


Parameter	Symbol	Min* ²	Тур	Max	Unit	Test conditions
Address setup time	t _{AS}	0	_	_	ns	
Address hold time	t _{AH}	50	_		ns	
CE to write setup time (WE controlled)	tcs	0	_	_	ns	
CE hold time (WE controlled)	t _{CH}	0	_	_	ns	
WE to write setup time (CE controlled)	t _{WS}	0	_	_	ns	
WE hold time (CE controlled)	t _{WH}	0	_	_	ns	
OE to write setup time	toes	0	_	_	ns	
OE hold time	t _{OEH}	0	_	_	ns	
Data setup time	t _{DS}	50	_	_	ns	
Data hold time	t _{DH}	0	_	_	ns	
WE pulse width (WE controlled)	t _{WP}	100	_	_	ns	
CE pulse width (CE controlled)	t _{CW}	100	_	_	ns	
Data latch time	t _{DL}	50	_	_	ns	
Byte load cycle	t _{BLC}	0.2	_	30	μs	
Byte load window	t _{BL}	100	_	_	μs	
Write cycle time	t _{WC}	_	_	10* ³	ms	
Time to device busy	t _{DB}	120	_	_	ns	
Write start time	t _{DW}	0*4	_	_	ns	

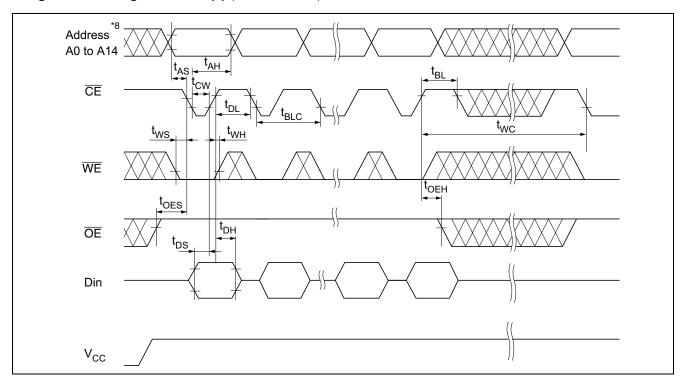
Notes: 1. t_{DF} and t_{DFR} are defined as the time at which the outputs achieve the open circuit conditions and are no longer driven.

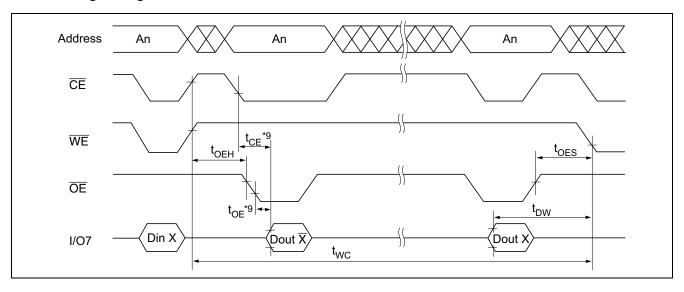

- 2. Use this device in longer cycle than this value.
- 3. t_{WC} must be longer than this value unless polling techniques are used. This device automatically completes the internal write operation within this value.
- 4. Next read or write operation can be initiated after t_{DW} if polling techniques are used.
- 5. A6 through A14 are page address and these addresses are latched at the first falling edge of WE.
- 6. A6 through A14 are page address and these addresses are latched at the first falling edge of $\overline{\text{CE}}$.
- 7. See AC read characteristics.

Timing Waveforms


Read Timing Waveform

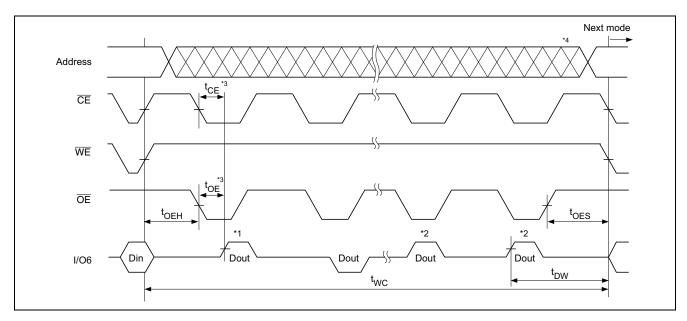
Byte Write Timing Waveform (1) (WE Controlled)


Byte Write Timing Waveform (2) (CE Controlled)


Page Write Timing Waveform (1) (WE Controlled)

Page Write Timing Waveform (2) (CE Controlled)

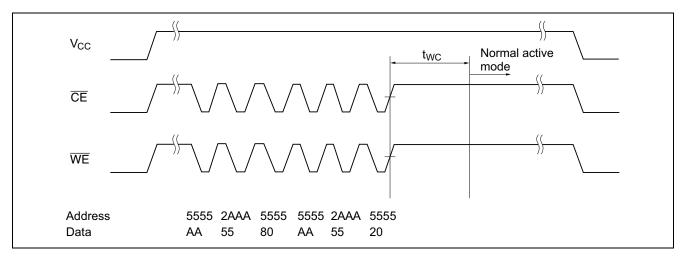
Data Polling Timing Waveform


Toggle bit

This device provide another function to determine the internal programming cycle. If the EEPROM is set to read mode during the internal programming cycle, I/O6 will charge from "1" to "0" (toggling) for each read. When the internal programming cycle is finished, toggling of I/O6 will stop and the device can be accessible for next read or program.

Toggle bit Waveform

Notes: 1. I/O6 beginning state is "1".


- 2. I/O6 ending state will vary.
- 3. See AC read characteristics.
- 4. Any address location can be used, but the address must be fixed.

Software Data Protection Timing Waveform (1) (in protection mode)

Software Data Protection Timing Waveform (2) (in non-protection mode)

Functional Description

Automatic Page Write

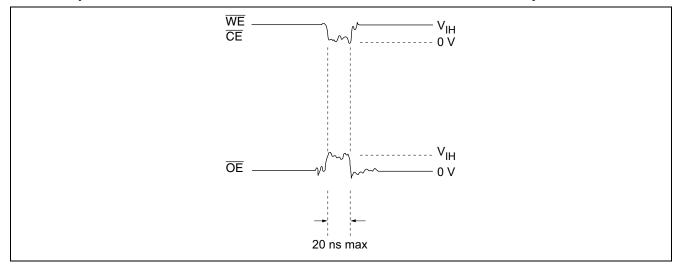
Page-mode write feature allows 1 to 64 bytes of data to be written into the EEPROM in a single write cycle. Following the initial byte cycle, an additional 1 to 63 bytes can be written in the same manner. Each additional byte load cycle must be started within 30 μ s from the preceding falling edge of \overline{WE} or \overline{CE} . When \overline{CE} or \overline{WE} is high for 100 μ s after data input, the EEPROM enters write mode automatically and the input data are written into the EEPROM.

Data Polling

Data polling indicates the status that the EEPROM is in a write cycle or not. If EEPROM is set to read mode during a write cycle, an inversion of the last byte of data outputs from I/O7 to indicate that the EEPROM is performing a write operation.

WE, CE Pin Operation

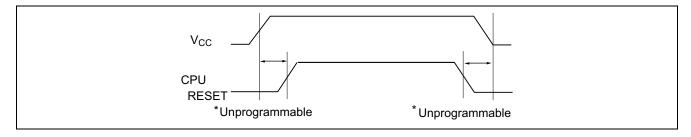
During a write cycle, addresses are latched by the falling edge of \overline{WE} or \overline{CE} , and data is latched by the rising edge of \overline{WE} or \overline{CE} .


Write/Erase Endurance and Data Retention Time

The endurance is 10^5 cycles in case of the page programming and 10^4 cycles in case of the byte programming (1% cumulative failure rate). The data retention time is more than 10 years when a device is page-programmed less than 10^4 cycles.

Data Protection

To prevent this phenomenon, this device has a noise cancelation function that cuts noise if its width is 20 ns or less.


1. Data Protection against Noise on Control Pins (\overline{CE} , \overline{OE} , \overline{WE}) during Operation During readout or standby, noise on the control pins may act as a trigger and turn the EEPROM to programming mode by mistake. Be careful not to allow noise of a width of more than 20 ns on the control pins.

2. Data Protection at V_{CC} On/Off

When V_{CC} is turned on or off, noise on the control pins generated by external circuits (CPU, etc) may act as a trigger and turn the EEPROM to program mode by mistake. To prevent this unintentional programming, the EEPROM must be kept in an unprogrammable state while the CPU is in an unstable state.

Note: The EEPROM should be kept in unprogrammable state during VCC on/off by using CPU RESET signal.

2.1 Protection by \overline{CE} , \overline{OE} , \overline{WE}

To realize the unprogrammable state, the input level of control pins must be held as shown in the table below.

CE	Vcc	×	×
ŌĒ	×	V _{SS}	×
WE	×	×	Vcc

x: Don't care

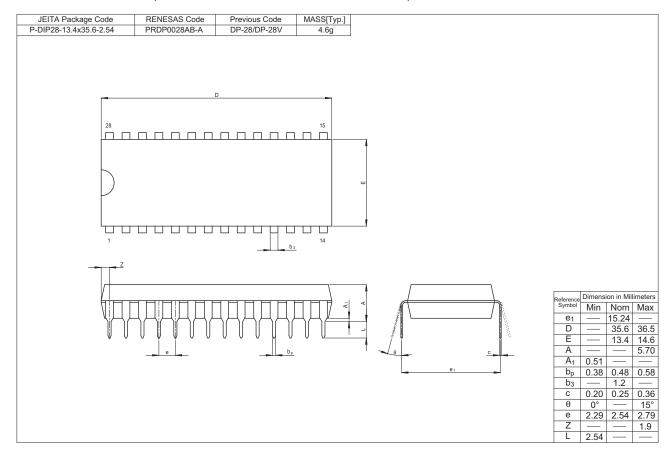
V_{CC}: Pull-up to VCC level V_{SS}: Pull-down to VSS level

3. Software data protection

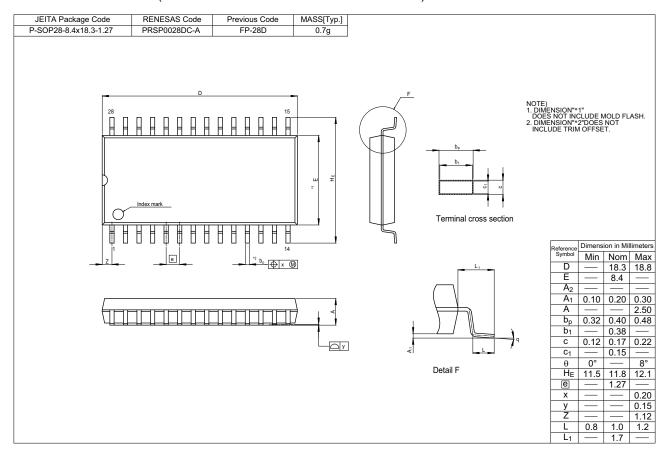
To prevent unintentional programming, this device has the software data protection (SDP) mode. The SDP is enabled by inputting the following 3 bytes code and write data. SDP is not enabled if only the 3 bytes code is input. To program data in the SDP enable mode, 3 bytes code must be input before write data.

Address Data	
5555 AA	
2AAA 55	
↓ ↓ ↓ 5555 A0	
Write address Write data } I	Normal data input
111110 0001111110 000111	Torrida data input

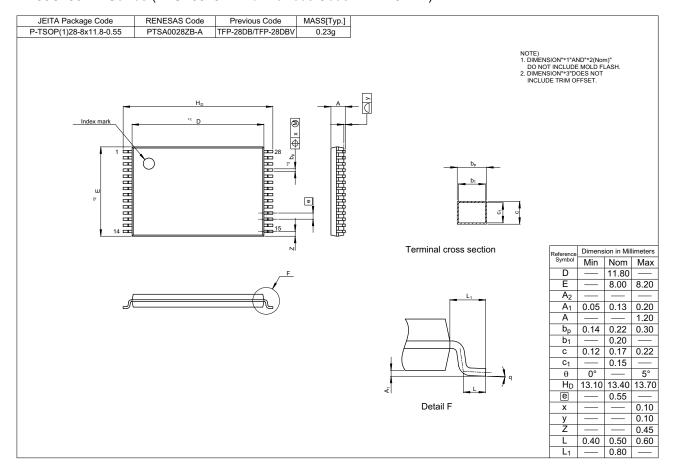
The SDP mode is disabled by inputting the following 6 bytes code. Note that, if data is input in the SDP disable cycle, data can not be written.


Address	Data
5555	AA
2AÅA	55
↓ 5555	↓ 80
↓ 5555	ÅA
2AAA	↓ 55
↓ 5555	↓ 20

The software data protection is not enabled at the shipment.


Note: There are some differences between Renesas Electronics' and other company's for enable/disable sequence of software data protection. If there are any questions, please contact with Renesas Electronics' sales offices.

Package Dimensions


HN58C256API Series (PRDP0028AB-A / Previous Code: DP-28V)

HN58C256AFPI Series (PRSP0028DC-A / Previous Code: FP-28DV)

HN58C256ATI Series (PTSA0028ZB-A / Previous Code: TFP-28DBV)

Revision History

HN58C256AI Series Data Sheet

		Description		
Rev.	Date	Page	Summary	
Rev.1.00	Oct 07, 2013	_	Initial issue	

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

"High Quality": Transportation equipment (automobiles, trains, ships, etc.): traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to quard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronic

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

Tel: +1-905-898-5441. Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Pax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141